5 research outputs found

    Phase Retrieval and Design with Automatic Differentiation

    Full text link
    The principal limitation in many areas of astronomy, especially for directly imaging exoplanets, arises from instability in the point spread function (PSF) delivered by the telescope and instrument. To understand the transfer function, it is often necessary to infer a set of optical aberrations given only the intensity distribution on the sensor - the problem of phase retrieval. This can be important for post-processing of existing data, or for the design of optical phase masks to engineer PSFs optimized to achieve high contrast, angular resolution, or astrometric stability. By exploiting newly efficient and flexible technology for automatic differentiation, which in recent years has undergone rapid development driven by machine learning, we can perform both phase retrieval and design in a way that is systematic, user-friendly, fast, and effective. By using modern gradient descent techniques, this converges efficiently and is easily extended to incorporate constraints and regularization. We illustrate the wide-ranging potential for this approach using our new package, Morphine. Challenging applications performed with this code include precise phase retrieval for both discrete and continuous phase distributions, even where information has been censored such as heavily-saturated sensor data. We also show that the same algorithms can optimize continuous or binary phase masks that are competitive with existing best solutions for two example problems: an Apodizing Phase Plate (APP) coronagraph for exoplanet direct imaging, and a diffractive pupil for narrow-angle astrometry. The Morphine source code and examples are available open-source, with a similar interface to the popular physical optics package Poppy

    Periodic Astrometric Signal Recovery Through Convolutional Autoencoders

    Get PDF
    Astrometric detection involves precise measurements of stellar positions, and it is widely regarded as the leading concept presently ready to find Earth-mass planets in temperate orbits around nearby sun-like stars. The TOLIMAN space telescope [39] is a low-cost, agile mission concept dedicated to narrow-angle astrometric monitoring of bright binary stars. In particular the mission will be optimised to search for habitable-zone planets around {\}{\$}{\backslash}alpha {\$}{\$}\alpha$ Centauri AB. If the separation between these two stars can be monitored with sufficient precision, tiny perturbations due to the gravitational tug from an unseen planet can be witnessed and, given the configuration of the optical system, the scale of the shifts in the image plane are about one-millionth of a pixel. Image registration at this level of precision has never been demonstrated (to our knowledge) in any setting within science. In this paper, we demonstrate that a Deep Convolutional Auto-Encoder is able to retrieve such a signal from simplified simulations of the TOLIMAN data and we present the full experimental pipeline to recreate out experiments from the simulations to the signal analysis. In future works, all the more realistic sources of noise and systematic effects present in the real-world system will be injected into the simulations

    Periodic Astrometric Signal Recovery through Convolutional Autoencoders

    Get PDF
    Astrometric detection involves a precise measurement of stellar positions, and is widely regarded as the leading concept presently ready to find earth-mass planets in temperate orbits around nearby sun-like stars. The TOLIMAN space telescope[39] is a low-cost, agile mission concept dedicated to narrow-angle astrometric monitoring of bright binary stars. In particular the mission will be optimised to search for habitable-zone planets around Alpha Centauri AB. If the separation between these two stars can be monitored with sufficient precision, tiny perturbations due to the gravitational tug from an unseen planet can be witnessed and, given the configuration of the optical system, the scale of the shifts in the image plane are about one millionth of a pixel. Image registration at this level of precision has never been demonstrated (to our knowledge) in any setting within science. In this paper we demonstrate that a Deep Convolutional Auto-Encoder is able to retrieve such a signal from simplified simulations of the TOLIMAN data and we present the full experimental pipeline to recreate out experiments from the simulations to the signal analysis. In future works, all the more realistic sources of noise and systematic effects present in the real-world system will be injected into the simulations.Comment: Preprint version of the manuscript to appear in the Volume "Intelligent Astrophysics" of the series "Emergence, Complexity and Computation", Book eds. I. Zelinka, D. Baron, M. Brescia, Springer Nature Switzerland, ISSN: 2194-728

    The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope -- IV. Aperture Masking Interferometry

    Full text link
    The James Webb Space Telescope's Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first such interferometer in space, operating at 3-5 \micron~wavelengths, and a bright limit of ≃4\simeq 4 magnitudes in W2. We describe the NIRISS Aperture Masking Interferometry (AMI) mode to help potential observers understand its underlying principles, present some sample science cases, explain its operational observing strategies, indicate how AMI proposals can be developed with data simulations, and how AMI data can be analyzed. We also present key results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI) technique benefits from AMI operational strategies, we also cover NIRISS KPI methods and analysis techniques, including a new user-friendly KPI pipeline. The NIRISS KPI bright limit is ≃8\simeq 8 W2 magnitudes. AMI (and KPI) achieve an inner working angle of ∼70\sim 70 mas that is well inside the ∼400\sim 400 mas NIRCam inner working angle for its circular occulter coronagraphs at comparable wavelengths.Comment: 30 pages, 10 figure

    Phase retrieval and design with automatic differentiation: tutorial

    No full text
    The principal limitation in many areas of astronomy, especially for directly imaging exoplanets, arises from instability in the point spread function (PSF) delivered by the telescope and instrument. To understand the transfer function, it is often necessary to infer a set of optical aberrations given only the intensity distribution on the sensor—the problem of phase retrieval. This can be important for post-processing of existing data, or for the design of optical phase masks to engineer PSFs optimized to achieve high-contrast, angular resolution, or astrometric stability. By exploiting newly efficient and flexible technology for automatic differentiation, which in recent years has undergone rapid development driven by machine learning, we can perform both phase retrieval and design in a way that is systematic, user-friendly, fast, and effective. By using modern gradient descent techniques, this converges efficiently and is easily extended to incorporate constraints and regularization. We illustrate the wide-ranging potential for this approach using our new package, Morphine. Challenging applications performed with this code include precise phase retrieval for both discrete and continuous phase distributions, even where information has been censored such as heavily saturated sensor data. We also show that the same algorithms can optimize continuous or binary phase masks that are competitive with existing best solutions for two example problems: an apodizing phase plate coronagraph for exoplanet direct imaging, and a diffractive pupil for narrow-angle astrometry. The Morphine source code and examples are available open-source, with an interface similar to the popular physical optics package Poppy
    corecore